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1 Lagrangian Mechanics
Lagrangian mechanics, an elegant framework in classical mechanics introduced by Joseph-Louis Lagrange, offers
a concise method for describing the dynamics of physical systems. Unlike Newtonian mechanics, which relies
on forces, Lagrangian mechanics employs only one function called Lagrangian with dimension energy, providing
a versatile approach to analyzing motion. By expressing dynamics in terms of generalized coordinates and
velocities, Lagrangian mechanics offers a unified framework applicable to a wide range of phenomena, from
celestial motion to mechanical systems. In this overview, we will explore the key principles and applications of
Lagrangian mechanics, illuminating its importance in understanding the behavior of physical systems.

1.1 Lagrangian and Action
The main objects we want to study in Lagrangian mechanics are Lagrangian and action.

Definition. Lagrangian and generalized coordinate
Lagrangian L is a function of generalized coordinate q ∈ RN and its derivative of time q̇ and is defined as

L(q, q̇; t) = T − V ,

where T is the kinetic energy, V is the potential energy and N is called the degree of freedom. Note that q and
q̇ are functions of time, this is why the Lagrangian is denoted by L(q, q̇; t).

Definition. Action
Action S is a functional of the q and q̇, defined as

S[q, q̇; t] =
∫ tf

ti

L(q, q̇; t)dt.

These two physical quantities are the most basic concepts in Lagrangian mechanics.

1.2 The Least Action Principle (Hamiltonian Principle)
The path in the configuration space for a motion always has the least action.
This can be written as a variational problem, that is,

δS
δq

∣∣∣∣
classical path

= 0,

or equivalently

δ

∫ tf

ti

L(q, q̇; t)dt
∣∣∣∣
path

= 0.

This principle is called the least action principle. One might ponder the origin of this curious principle, which
remained unexplained for centuries. It wasn’t until the advent of the Feynman path integral, hundreds of years
later, that a satisfactory explanation was finally provided.

1.3 Euler-Lagrangian Equation
With the least action principle, we can derive the Euler-Lagrangian Equation.

Example 1.1. Pendulum
Consider the pendulum with the length of the rope L and the mass of the particle m.
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θ

solution:
Write down the Lagrangian

L(θ, θ̇; t) = 1

2
mL2θ̇2 −mgL(1− cos θ).

The Euler-Lagrange equation gives

d

dt

∂L
∂θ̇

− ∂L
∂θ

= 0 =⇒ θ̈ = − g

L
sin θ .

2 Hamiltonian Mechanics
Hamiltonian mechanics, pioneered by William Rowan Hamilton, offers a powerful framework for describing the
dynamics of classical systems. It focuses on energy principles, expressed through the Hamiltonian function,
and introduces generalized coordinates and momenta. Hamilton’s equations, derived from the principle of least
action, govern the system’s evolution over time. This formalism provides a concise and elegant approach to
analyzing complex systems, with applications spanning classical mechanics to quantum physics.

2.1 Legendre Transformation
In thermodynamics, we have the relations

dE = TdS − PdV,

, where E, T, S, P, and V are internal energy, temperature, entropy, pressure, and volume respectively. The
internal energy E is a function of S and V .
The definition of enthalpy H is

E + PV,

so that
dH = TdS + V dP,

where H is a function of S and P . This method to change E(S, V ) into H(S, P ) is called Legendre transformation.
We can do the Legendre transformation on the Lagrangian to get a new function.

2.2 Hamiltonian
Definition. Hamiltonian and generalized momentum
The Hamiltonian H is the Legendre transformation of Lagrangian. That is,

H = −L+ q̇p.

It is a function of generalized coordinate q and generalized momentum p and can be written as

H(q, p; t) = T + V,

where the generalized momentum is defined as

p =
∂L
∂q̇ .
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2.3 Hamiltonian Equations (Canonical Equations)
By the relation of Legendre transformation

H = −L+ q̇p.
We have

dH = q̇dp + pdq̇ − dL

= q̇dp + pdq̇ − ∂L
∂q̇ dq̇ − ∂L

∂q dq

= q̇dp − ṗdq.

Hence we have the Hamiltonian equations (or Canonical equations)
∂H
∂q = −ṗ,
∂H
∂p = q̇.

Example 2.1. Pendulum
Consider the pendulum with the length of the rope L and the mass of the particle m.

θ

solution:
Write down the Hamiltonian

H(θ, p; t) =
p2

2mL2
+mgL(1− cos θ).

The Hamiltonian equations give
∂H
∂θ

= mgL sin θ = −ṗ,

∂H
∂p

=
p

2mL2
= θ̇.

=⇒ θ̈ = − g

L
sin θ.

2.4 Geometry in Hamiltonian Mechanics
The Hamiltonian equations can be rewritten in a matrix form

J
∂H
∂x

= ẋ, where J =

(
0 I
−I 0

)
and x = (q, p)T

is called the symplectic form. This reminds the mathematician the Hamiltonian is highly related to symplectic
geometry (symplectic geometry was introduced by the Hamiltonian mechanics actually). The 2N dimensional
space composed by the generalized position and momentum is called phase space, and can be described by
geometry.

Definition. Phase space
The phase space is a smooth manifold M equipped with a symplectic form ω. As a result, a Hamiltonian system
is denoted by a smooth manifold M , a symplectic form ω, and a Hamiltonian H (M,ω,H). The Lagrangian is
the symplectic potential of the manifold.

The geometric framework underlying Hamiltonian and Lagrangian mechanics is both elegant and intricate.
Recognizing that the phase space can be characterized as a symplectic manifold suffices for our present discussion,
and we won’t delve deeply into it here. Instead, let’s shift our focus to canonical transformations, another pivotal
theory within classical mechanics.
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3 Classical Statistical Mechanics
Classical statistical mechanics bridges the gap between microscopic particle behavior and macroscopic properties.
It utilizes statistical methods to analyze ensembles of particles, predicting collective behavior based on individual
interactions. Key concepts include ensembles, Boltzmann distribution, and entropy, providing insights into phase
transitions and thermodynamics. This framework is essential for understanding various phenomena in physics,
chemistry, and engineering.

3.1 Canonical Transformations

Consider a transformation that maps the original coordinate x in the phase space to another ξ⃗

x 7→ ξ⃗,

then the Hamiltonian equations becomes the following form

∂H
∂x =

∂ξ⃗

∂x

T
∂H
∂ξ⃗

.

Therefore, we can derive the equation in transformed coordinate

˙⃗
ξ =

∂ξ⃗

∂xJ
∂ξ⃗

∂x

T
∂H
∂ξ⃗

.

The form of the Hamiltonian equations is preserved if

∂ξ⃗

∂xJ
∂ξ⃗

∂x

T

= J.

Definition. Canonical transformation
The transformations x 7→ ξ⃗ preserve the form of Hamiltonian equations, that is, satisfies the condition

∂ξ⃗

∂xJ
∂ξ⃗

∂x

T

= J

are called canonical transformations.

Remark. The Hamiltonian with the transformed coordinate may have a different form but still satisfies the
Hamiltonian equations.

An essential characteristic of canonical transformations is that the collection of them constitutes a Lie group.
Moreover, the Hamiltonian equations being preserved means that the symplectic structure is preserved. This is
the meaning of the word ”canonical”. Therefore, one can state that the symplectic structure is preserved by the
action of a Lie group.

3.2 Liouville’s Theorem
Liouville’s theorem in statistical mechanics, named after Joseph Liouville, states that the phase space volume
and density of a Hamiltonian system remain constant under canonical transformations. This principle is pivotal
for understanding the dynamics of complex systems and plays a crucial role in modeling macroscopic behavior.
Before discussing Liville’s theorem, we discuss another critical theorem in physics.

3.2.1 Noether’s Theorem

Theorem 3.1. Noether’s theorem
All continuous symmetries of the action of a conservative physical system have a corresponding conservation law.
Mathematically, if the action is invariant under the transformation of a Lie group, then it has a corresponding
conservative current J so that ∂µJ

µ = 0 on the corresponding manifold.

Remark. The conservation of momentum, angle momentum, and energy are the results of Noether’s theorem.

Hao-Yang Yen (https://kikiyenhaoyang.github.io/kikiyen/Web/index.html) 4



4 STATISTICAL FIELD THEORY

As mentioned above, the collection of canonical transformations is a Lie group and the Hamiltonian and the
action have a continuous symmetry as a result. This is the Liouvill’s theorem.

Theorem 3.2. Liouville’s theorem
The distribution (or mathematically saying, measurement, physically saying, the density), of the phase space,
is invariant under the canonical transformation. Concisely,∫

d2Nx =

∫
d2N ξ⃗.

Moreover, the measurement is uniform in the phase space.

Liouville’s theorem asserts that the density of phase space remains unchanged through canonical transforma-
tions. Conceptually, phase space behaves akin to a incompressible fluid undergoing these transformations, as
shown in Figure 1. This is not only an important consequence in statistical mechanics but also an important

Figure 1: Phase volume behaves like the incompressible fluid.

result of symplectic geometry. The significance of this theorem is that the density of the phase space is
uniform even if the dimension (因次) of each degree of freedom may be different. An important
result of Liouville’s theorem is equipartition Theorem.

3.2.2 Equipartition theorem

The equipartition theorem is a principle in statistical mechanics that describes the distribution of energy among
the different degrees of freedom of a system in thermal equilibrium. Specifically, it states that, on average,
each quadratic degree of freedom of a system will have an equal share of the total energy available, regardless
of the specific form of the energy (kinetic or potential). In other words, for systems in equilibrium at a given
temperature, the energy is equally distributed among all available modes of motion or storage.

Theorem 3.3. Equipartition theorem
Energy is partitioned equally amongst all energetically accessible degrees of freedom of a system.

The most intuitive example of the equipartition theorem is the ideal gas.

Example 3.1. Ideal gas
The energy of the ideal gas E = H is

E =
3

2
NkbT.

However, this statement is not precise. The precise statement is the energy for three-dimensional ideal gas. The
precise expression of the energy of ideal gas is

E =
d

2
NkBT,

where d is the dimension. The energy distributed in each degree of freedom is
1

2
NkBT.

The degree of freedom can have an arbitrary dimension, angle (dimensionless), for instance.

4 Statistical Field Theory
Following our exploration of particle statistical mechanics, we now transition to a more sophisticated subject:
statistical field theory. This advanced framework is employed to tackle systems featuring interactions and
provides insights into phenomena like phase transitions.
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4.1 Landau-Ginzburg Theory
The Landau-Ginzburg theory stands as a cornerstone in the realm of condensed matter physics and statistical
mechanics, providing a powerful framework for understanding phase transitions and critical phenomena in
various physical systems. Named after Lev Landau and Vitaly Ginzburg, who laid its foundations, this theory
offers profound insights into the behavior of complex systems near critical points. At its core, the Landau-
Ginzburg theory employs concepts from both classical field theory and statistical mechanics to describe the
collective behavior of order parameters and fluctuations near phase transitions. By characterizing the free
energy of a system in terms of an order parameter, it allows for the analysis of phase transitions in terms
of symmetry-breaking phenomena. The Landau-Ginzburg theory has found wide-ranging applications across
disciplines, from condensed matter physics to cosmology, and continues to be a fertile ground for theoretical
exploration and experimental validation.

4.1.1 Partition Function

The partition function is a fundamental concept in statistical mechanics, serving as a central tool for describing
the thermodynamic properties of a physical system. It encapsulates a wealth of information about the system’s
microscopic states and their corresponding energies, enabling the calculation of macroscopic observables such as
temperature, pressure, and entropy. At its essence, the partition function represents the sum of the probabilities
of all possible states accessible to the system, weighted by their corresponding energies. This sum effectively
accounts for the multiplicity of states and their contributions to the system’s overall behavior. In statistical
mechanics, the partition function plays a pivotal role in connecting the microscopic world of individual particles
or degrees of freedom to the macroscopic properties observed in thermodynamics. Through various mathematical
manipulations and techniques, such as the canonical ensemble or the grand canonical ensemble, physicists can
extract valuable insights into the thermodynamic behavior of complex systems from the partition function. The
partition function concept finds wide-ranging applications across physics, chemistry, and engineering, providing
a versatile and powerful tool for analyzing and predicting the behavior of diverse physical systems, from simple
gases to complex materials and beyond. The mathematical details of the partition will be skipped here.

4.1.2 Symmetry and Phase

As mentioned above, we can use a partition to define a system. I denote the partition function as Z in this
note. The partition function in Landau-Ginzburg theory can be written as the functional integral of the mean
fields, the mean fields are fields that approximate a system’s behavior by considering a large number of degrees
of freedom

Z =

∫
Dϕ exp

[
−Nβ

∫
F [ϕ(x)]dx

]
=

∫
Dϕ e−NβL[ϕ],

where L is a functional of the mean fields.
The functional integral is very difficult to compute, so we use the saddle point approximation to approximate
the partition function, that is, use the relation

Z ≈
∑
i

e−NβL[ϕi],

where ϕi are the mean fields so that
δL

δϕ

∣∣∣∣
ϕi

= 0.

A simple non-trivial example is fourth order Landau theory.

Example 4.1. Fourth order Landau theory
The partition function is

Z = A

∫
dy e−NβL[y],

where L is the Landau free energy and can be expressed as

L = a1m+
1

2
a2m

2 +
1

4
a4m

4.

The saddle point approximation is
Z ≈

∑
i

e−NβL[mi],

where ∂L/∂m|mi
= 0. The partition function is almost determined by the extreme value points. First, consider

a1 = 0, that is, no external field. The extreme value can have two ways to change from one global extreme
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value point to two global extreme value points when the coefficients a2 and a4 are modified, as shown in Figure
2. The first way is changing continuously and gradually and another one is changing discretely and directly.
When the global extreme value point changes from one point (or conversely) to two points, the phase transition
happens. These two changing ways correspond to two kinds of phase transition, first order and second order.

Figure 2: Spontaneous symmetry breaking.

The mathematical description of phase transition here is ”symmetry breaking”, we can see that the symmetry
of the global extreme points changes from infinite symmetry to Z2. Since there is no external field, this kind of
symmetry breaking is called spontaneous symmetry breaking.
When a1 6= 0, that is, there exists an external field. The principle is the same and is shown in Figure 3. But
the symmetry breaks from Z2 to no symmetry. The symmetry breaking led to by the external field is called
explicit symmetry breaking.

Figure 3: Explicit symmetry breaking.

4.2 Topological Order
Topological order represents a departure from Landau’s theory of phase transitions. While Landau’s theory
categorizes phases based on symmetry and describes phase transitions as symmetry breaking, scientists have
observed that certain materials exhibit distinct phases despite lacking symmetry or symmetry breaking. In
response to this discovery, a new framework emerged to explain such phenomena, known as topological order.
When the field structure becomes complex the symmetry may be hard to characterize.

Example 4.2. Topological Defect
The partition function is

Z =

∫
Dϕe−S[ϕ]/h̄,
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where S is the action and can be expressed as

S =

∫
(|∇ϕ|2 − λ|ϕ|2 +∆)dx.

This is very hard to use the saddle point approximation and there is no symmetry in this model.

In this field, defining symmetry is not straightforward; rather, phase transitions are characterized by changes
in the topological invariants of the manifold where the field is defined. These transitions are intricately tied
to alterations in topological invariants, reflecting shifts in the system’s underlying structure. Here, topology
assumes the role of elucidating the macroscopic state of matter, capturing its global properties that transcend
local details. The notion of topological order provides a comprehensive framework, employing geometry and
homotopy to classify vector bundles of the moduli space. Through this lens, the complex interplay between
spatial arrangements and intrinsic properties becomes apparent, offering profound insights into the collective
behavior of matter. The applications of topological order are diverse and profound, ranging from the exotic
phenomena of the Quantum Hall effect to the elusive properties of spin liquids. These phenomena underscore the
fundamental role played by topological order in understanding and predicting the behavior of diverse systems.
Despite its elegance and utility, topological order continues to be an active and vibrant research field, attracting
the attention of physicists and mathematicians alike. Its ability to reveal deep connections between seemingly
disparate systems and phenomena ensures its enduring relevance in the pursuit of understanding the fundamental
nature of matter.
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